Enhanced transcription of the Arabidopsis disease resistance genes RPW8.1 and RPW8.2 via a salicylic acid-dependent amplification circuit is required for hypersensitive cell death.

نویسندگان

  • Shunyuan Xiao
  • Samantha Brown
  • Elaine Patrick
  • Charles Brearley
  • John G Turner
چکیده

The Arabidopsis disease resistance (R) genes RPW8.1 and RPW8.2 couple the recognition of powdery mildew pathogens of this plant with the subsequent induction of a localized necrosis, or hypersensitive response (HR). The HR restricts the spread of the infection and renders the plant resistant. One-third of Arabidopsis plants transformed with a genomic fragment containing RPW8.1 and RPW8.2 developed spontaneous HR-like lesions (SHL) in the absence of pathogens. We demonstrate that SHL occurs in transgenic lines that contain multiple copies of the transgene and express RPW8.1 and RPW8.2 at high levels. SHL is associated with salicylic acid (SA) accumulation, and at the site of the lesion, there is increased expression of RPW8.1, increased production of H(2)O(2), and increased expression of pathogenesis-related genes. These lesions are physiologically similar to the pathogen-induced HR mediated by RPW8.1 and RPW8.2. Significantly, environmental conditions that suppress SHL suppress the transcription of RPW8.1 and RPW8.2 and also suppress resistance to powdery mildews, even in transgenic lines containing RPW8.1 and RPW8.2 that normally do not express SHL. Furthermore, treatment with SA increases the transcription of RPW8.1 and RPW8.2, induces SHL, and enhances resistance to powdery mildews. We conclude that HR requires the transcription of RPW8.1 and RPW8.2, which is regulated independently of the pathogen by SA-dependent feedback amplification.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The atypical resistance gene, RPW8, recruits components of basal defence for powdery mildew resistance in Arabidopsis.

Genetic studies have identified a number of components of signal transduction pathways leading to plant disease resistance and the accompanying hypersensitive response (HR) following detection of pathogens by plant resistance (R) genes. In Arabidopsis, the majority of R proteins so far characterized belong to a plant superfamily that have a central nucleotide-binding site and C-terminal leucine...

متن کامل

Ectopic expression of RESISTANCE TO POWDERY MILDEW8.1 confers resistance to fungal and oomycete pathogens in Arabidopsis.

Broad-spectrum disease resistance is a highly valuable trait in plant breeding and attracts special attention in research. The Arabidopsis gene locus RESISTANCE TO POWDERY MILDEW 8 (RPW8) contains two adjacent homologous genes, RPW8.1 and RPW8.2, and confers broad-spectrum resistance to powdery mildew. Remarkably, the RPW8.2 protein is specifically localized to the extrahaustorial membrane (EHM...

متن کامل

Intraspecific genetic variations, fitness cost and benefit of RPW8, a disease resistance locus in Arabidopsis thaliana.

The RPW8 locus of Arabidopsis thaliana confers broad-spectrum resistance to powdery mildew pathogens. In many A. thaliana accessions, this locus contains two homologous genes, RPW8.1 and RPW8.2. In some susceptible accessions, however, these two genes are replaced by HR4, a homolog of RPW8.1. Here, we show that RPW8.2 from A. lyrata conferred powdery mildew resistance in A. thaliana, suggesting...

متن کامل

RESISTANCE TO POWDERY MILDEW8.1 boosts pattern‐triggered immunity against multiple pathogens in Arabidopsis and rice

The Arabidopsis gene RESISTANCE TO POWDERY MILDEW8.1 (RPW8.1) confers resistance to virulent fungal and oomycete pathogens that cause powdery mildew and downy mildew, respectively. However, the underlying mechanism remains unclear. Here, we show that ectopic expression of RPW8.1 boosts pattern-triggered immunity (PTI) resulting in enhanced resistance against different pathogens in both Arabidop...

متن کامل

Identification and utilization of a sow thistle powdery mildew as a poorly adapted pathogen to dissect post-invasion non-host resistance mechanisms in Arabidopsis

To better dissect non-host resistance against haustorium-forming powdery mildew pathogens, a sow thistle powdery mildew isolate designated Golovinomyces cichoracearum UMSG1 that has largely overcome penetration resistance but is invariably stopped by post-invasion non-host resistance of Arabidopsis thaliana was identified. The post-invasion non-host resistance is mainly manifested as the format...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Plant cell

دوره 15 1  شماره 

صفحات  -

تاریخ انتشار 2003